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Abstract

In recent years, Transformer models have been widely
used for various Natural Language Processing tasks and
have achieved state-of-the-art accuracy. However, these
models are computationally expensive and require a lot
of time even for fine-tuning. In this work, we use various
profiling techniques to understand the workload patterns
of Transformer models. We introduce FastTran, a system
that uses a caching mechanism to reduce the fine-tuning
time for Transformer models. We also propose some fu-
ture research directions that could further increase per-
formance and reduce times for this workload.

1 Introduction

Recurrent Neural Networks such as LSTMs [9] and
GRUs [1] have been widely used by the Natural Lan-
guage Processing community to address many down-
stream tasks such as sentiment classification, question
answering, etc., because of their nice property of having
the ability to remember a hidden state for long sentences
and paragraphs. Building good language models is cru-
cial for achieving good performance in these tasks. But
RNN:gs, due to their architecture, have two problems: the
model forgets the hidden state of distant positions, and
they are hard to train in parallel. To address these chal-
lenges, there have been breakthroughs and fast-paced de-
velopments in the field over the last few years. Namely,
NLP scientists have developed a new architecture called
Transformers [29]. Intuitively, the Transformer archi-
tecture invents a mechanism to pay attention to specific
words. For example, during Neural Machine Transla-
tion, attention is paid to the word and its context in the
source language that is currently being translated. Using
a self-attention mechanism, the models can then remem-
ber long-term dependencies. By not relying on recurrent

neural network modules, Transformers can be efficiently
parallelized. Taking this idea one step further, the Trans-
formers are trained in a bi-directional architecture for
better language modeling by capturing context from both
directions in BERT [3]. The pre-trained BERT model is
widely used in downstream tasks by fine-tuning to the
target task and dataset. More recently (XLM [15], GPT-
2 [24], XLNet [33], RoBERT [17]), this architecture has
been improved using various other Transformer models
to further address some nuances.

Though these models have succeeded in creating new
benchmarks in many NLP tasks, they are very inefficient
to train from scratch. Because of the sheer number of
parameters in these models (BERT-large has 340 million
parameters) and the huge amount of data they need, train-
ing them takes a long time (multiple days) and requires
many resources (CPUs, GPUs, memory, etc.). There-
fore, the general pipeline of how these models are used
is as follows: In the first phase, the model is trained
only once using a lot of resources and training data such
as Wikipedia and BookCorpus in a self-supervised man-
ner (Pre-training phase). In the second phase, for each
downstream task, the pre-trained model parameters are
directly used and the model is fine-tuned end-to-end. In
this phase, the parameters are allowed to adjust to “fit” to
the training data (Fine-tuning phase). In the final infer-
ence phase, the fine-tuned model is used to make predic-
tions ! (Inference phase). Because these complex models
are pre-trained only once, the researchers don’t have to
worry about the performance in the pre-training phase. In
fact, pre-trained parameters can be directly downloaded
for most models, which the researchers can then use as a
starting point for the fine-tuning phase. However, since
these models are large, even fine-tuning the parameters
end-to-end for a specific downstream task is not trivial,

1“Making predictions’ is vaguely used. An example of a down-
stream task that would make predictions could be the task of finding
answers in a text for question answering.



which makes this process time and resource consuming.
This is a major bottleneck for someone wishing to use
these pre-trained models to suit their specific needs.

In this project, we target the fine-tuning aspect of
these Transformer models on a single GPU server and
suggest ways in which their performance can be im-
proved. Specifically, we profile the resource usage pat-
terns in these Transformers and demonstrate what the
bottlenecks are by studying the CUDA operations in var-
ious Transformer architectures.

We then present techniques to exploit the usage behav-
ior of these models. We introduce our system, FastTran,
a caching mechanism which maps training examples to
their corresponding intermediate outputs.

More specifically, we perform the following tasks:

e Profile the training phase of various Transformer
models and collect GPU resource usage data.

e Cache forward propagation results to decrease time
of fine-tuning and compare fine-tuning results with
the traditional implementation.

e Study the trade-off between memory usage and
batch size in FastTran.

In section 2, we present an introduction to pre-training
and fine-tuning in Machine Learning and explain the
Transformer architecture. In section 3, we propose a sys-
tem, FastTran and present the two phases of the project,
namely, profiling and caching. In the Evaluation sec-
tion 4, we demonstrate how FastTran improves the time
taken for fine-tuning of Transformer models to a frac-
tion of the original fine-tuning time. In section 5, we
discuss various works that target different phases of ma-
chine learning workload and improve their performance.
Finally, in section 6, we discuss possible future direc-
tions to explore.

2 Background

2.1 Pre-training and Fine-tuning

Traditionally, to perform a task such as classification or
regression on a dataset, a neural network architecture is
designed and trained from scratch. The model param-
eters (neural network weights) are initialized randomly
and the network is fit on the dataset to minimize a loss
function using some optimization rule to update the pa-
rameters. This approach is viable and recommended if
the task can achieve good accuracy with a simple neural
network with few hidden layers. Especially if the num-
ber of model parameters isn’t very large compared to the
number of training examples, the designed neural net-
work can work well in such a scenario.

However, such training cannot be applied to perform
Natural Language Processing tasks because of the fol-
lowing reasons: NLP tasks require understanding of
complex patterns that arise in natural language. It is es-
pecially challenging because of word/sentence ambigu-
ity, understanding unstructured data, etc. Thus achieving
good accuracy on NLP tasks require training very deep
neural network architectures which in turn requires a lot
of labeled training data to prevent over-parametrization
for the models to converge. Unavailability of a lot of la-
beled data, but presence of a lot of unlabeled data led to
many works which explore semi-supervised techniques
that capture underlying semantics and patterns of the
data. In this workflow, deep neural networks (such as
BERT) with millions of parameters are pre-trained us-
ing lot of unlabeled data such as wikipedia and Google
News. The pre-training of these networks takes a lot of
time and uses a lot of resources.

The pre-trained networks can be used in the down-
stream tasks such as sentence classification, question an-
swering, etc. Instead of learning the model parameters
from scratch using random-initialization, the same pre-
trained model parameter initialization can be used for the
task by fine-tuning the network on the target dataset.

Two approaches have been considered to perform fine-
tuning:

1. End-to-end fine-tuning: In this approach, the en-
tire pre-trained neural network parameters are al-
lowed to change during the fine-tuning stage on the
target data.

2. Fine-tuning only the last layer: In this approach,
all the pre-trained neural network parameters except
the last fully connected layer parameters are main-
tained static. The last layer parameters are allowed
to change by the optimization algorithm while fine-
tuning on the target data.

The accuracy with the end-to-end fine-tuning approach
is usually better than the accuracy with the approach that
only updates last fully connected layer of the pre-trained
model. On the other hand, end-to-end fine-tuning re-
quires a lot of time and compute resources compared to
the second approach.

2.2 Transformer architecture

The transformer architecture is an encoder-decoder
model originally designed for machine translation task
based on Self-Attention mechanism. The model archi-
tecture, unlike prior models, does not rely on recurrence
or convolutional layers and uses only the self-attention
mechanism to encode the sequential structure of the sen-
tences. As a consequence, the sequential computation
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Figure 1: FastTran

doesn’t depend on the length of the input sentences and
takes constant time. Additionally, by incorporating the
word position in the sentence, Transformer layer training
can be efficiently parallelized.

The encoding and decoding components of the Trans-
former consists of 6 encoders and 6 decoders respec-
tively stacked on top of each other. Each encoder module
consists of a multi-headed self-attention layer and a feed-
forward layer. Matrix multiplications make up most of
the calculations that occur in these layers making it the
dominant operation that occur in Transformers.

As a result, the Transformer outperforms recurrent
and convolutional models in neural machine translation
task while requiring less computation to train. Many
state-of-the-art models (BERT [3], GPT [23], GPT-
2 [25], Transformer-XL [2], XLNet [33], XLM [15],
RoBERTa [17], DistilBERT [27], CTRL [11], Camem-
BERT [20], ALBERT [3]) based on the Transformer ar-
chitecture have been designed to address diverse array of
NLP tasks.

FastTran targets the fine-tuning phase of Transformer
based models using a single GPU machine.

3 Design

The design of FastTran consists of two phases: in the first
phase, we profile Transformer based architectures to de-
termine the bottlenecks and potential areas of optimiza-
tion; in the second phase, we employ a caching mech-
anism to alleviate the run time of Transformer model
based on the profiling outcomes.

3.1 Profiling

The first phase of the system consists of profiling GPU
usage of existing Transformer model architectures. This
helps in identifying the bottleneck, i.e, operations that

occupy most of the fine-tuning time. Using these results,
we devise a strategy in section 3.2 to improve fine-tuning
time. A similar approach can be employed to devise
strategies for reducing fine-tuning time for other models.

Three models were profiled: Google’s BERT [3],
Facebook’s XLLM [15], and XLNet [33] developed by
Carnegie Mellon University and Google.

In the first step, we reduced the complexity of the
Transformer model that is to be profiled so that we target
the specific things we want to profile. Specifically, we
reduced the number of stacked encoders and decoders
in the Transformer module to 1, reduced the number of
attention heads to 1 and trained only for one batch of
data. Doing this will run only one forward propagation
and one backward propagation step on the model. We
used NVIDIA CUDA Command-Line Profiler nvprof
to obtain the profiling results and used NVIDIA CUDA
Visual Profiler nvvp to observe the profiling results in an
easy to analyze Ul A screenshot showing the results of
nvvp profiling is presented in the appendix. The results
obtained by nvprof gave us insights into the coarse-
grained CUDA kernel calls invoked during one step of
training a Transformer model. nvvp also gives some
insights such as optimizing which kernel calls will give
most benefit in terms of efficient execution.

To obtain fine-grained profiling results, we used Py-
Torch’s Autograd Profiler. The Autograd Profiler lists
GPU CUDA operations and their relative usage percent-
ages during training of each model.

Fine-tuning a pre-trained model of which most of the
parameters are static can intuitively benefit from the
strategy of caching the final layer outputs regardless
of the model architecture. Profiling results for Trans-
former models show that most of the computations in
the forward propagation of the model are matrix mul-
tiplications. By caching the final layer outputs of the
pre-trained model in the first epoch of fine-tuning and
reading them directly from the cache in the subsequent
epochs, we can skip all these matrix multiplications,
thereby reducing the time taken to fine-tune the model.

3.2 Caching

We now describe the caching mechanism that has been
explored in FastTran. As shown in Figure 1, in the tra-
ditional fine-tuning setup, the examples are fed into the
transformer model to perform a forward propagation, fol-
lowed by a classification head specific to the fine-tuning
task. This process is performed for each batch of input
examples in each epoch. Let’s denote the output of the
last layer of the transformer model as I. Let’s consider
an input example X; with label Y;. Let I; be the interme-
diate layer output for X;. Since the weights of the trans-
former model are fixed, i.e. we do not perform back-



propagation, each time we perform a forward propaga-
tion for input X, it results in the same I;. In FastTran,
instead of performing the forward propagation in each
epoch and re-calculating I;, we cache this output in GPU
during the first epoch. For subsequent epochs, we load
the final layer outputs from the cache, re-use these val-
ues, and perform the training on the task specific model.
With this approach, the model architecture remains the
same. Hence, there is no degradation in the accuracy.

However, one might run into some challenges dur-
ing caching. One of the challenges that we faced while
implementing the caching mechanism was limitation of
GPU memory. If the available memory on the GPU is
smaller than the total size of the cached data, then the
caching approach as described in this section cannot be
applied directly. We propose a few potential solutions
below that could be employed to alleviate this problem.
We also discuss various trade-offs that one may need to
make to decide which solution to use.

o If the size of last layer outputs for the whole dataset
is large and cannot fit in the GPU RAM, instead of
caching them on GPU, we can store the results in
CPU RAM in the first epoch. In the subsequent
epochs, these values can be loaded into the GPU
RAM in batches.

e To further improve the performance, since the
model is trained by batching the data, these values
can be pre-fetched into the cache concurrently with
previous batch execution for the next batch. This
will overlap the training time with the caching time,
reducing the total run-time for fine-tuning.

e If the total size of the output is too big to fit even
in the CPU RAM, the percentage of outputs cached
can be adjusted based on the available RAM. In this
case, the forward propagation need be performed
only for examples whose outputs are not cached.

e Another approach to handle large cache size is to
use some kind of quantization on the cached data.
In this approach, lower precision floats can be used
to represent the cached data, thereby reducing the
amount of space occupied by the cache on the GPU.
As a downside of using a lower precision represen-
tation, the model’s accuracy might reduce. But this
approach is faster than the above techniques as it
avoids the overhead of accessing information from
CPU RAM and transferring it to the GPU RAM
which is slower than directly reading data from
GPU RAM.

e Improved sampling: Since the model is trained
batch-wise where the fine-tuning examples are
picked randomly, it can lead to a scenario where

within a batch, the intermediate layer outputs are
available in the cache for some of the examples
only. Loading from cache for a subset of examples,
and performing the forward propagation through the
transformer model for the remaining can reduce the
performance. To alleviate this, we propose an al-
ternative sampling approach for fine-tuning. In this
approach, one can only compute final layer outputs
for a batch of input data, cache it in GPU RAM and
perform some number of mini-batch optimization
steps only on this batch of data for a few iterations
before moving onto the next batch. In this way,
the caching mechanism will not be limited by the
available GPU memory by choosing an appropriate
batch size. However, one has to analyze whether
this new approach of performing few optimization
steps on same batch before sampling a new batch
will lead to a reduction in accuracy.

4 Evaluation

4.1 Experimental Setup

We implemented FastTran on top of the Hugging Face
Transformers repository?. For performing the experi-
ments, we deployed a VM on Google Cloud Platform
consisting of 2 vCPUs with 13 GB memory and 1
NVIDIA Tesla V100 GPU with 16 GB memory.

We ran the experiments on the Question Answering
task using SQUAD v1.1 dataset [26]. We split the dataset
into two sizes: a small dataset with 3433 training exam-
ples and a large dataset with 89632 training examples.

To implement the fine-tuning of the models without
caching, we used the torch.no_grad () scope for
the forward propagation of the BERT model parameters
that are to be kept static. We implemented fine-tuning
with caching in two steps. In the first step, we per-
form a forward propagation on all the input examples
as done in the first epoch and we store the final layer
outputs of the pre-trained model in the cache along with
the input examples as a TensorDataset in order to
reuse the existing sampling and data loading pipeline.
In the second step, which is the actual training step, in-
stead of running the forward propagation again and us-
ing the existing TensorDataset, we use the cached
TensorDataset stored in the first step. We train
the task-specific layers of the network using this cached
TensorDataset.

Zhttps://github.com/akshatabhat/transformers



BERT Profiling of CUDA Operations

CUDATotal Percentage

oo I
0.00% u ] - - - - -
S > > & & S
& S &

& & & <

éb 3 m@\
& g o o & &
& &

&/
& S

&
& & B
@@Q’ & &
o

mistEpoch m2ndEpoch

Figure 2: Profiling BERT

4.2 Profiling

We now discuss the results of end-to-end profiling per-
formed using PyTorch Autograd Profiler. Note that the
profiling experiments were carried out on the original
transformer models without our caching mechanism to
determine the bottleneck of the existing architectures.
These experiments were performed for one batch and
two epochs. For BERT, in Figure 2, we observe that ma-
trix multiplications in the forward propagation (mm and
matmul) occupy a large portion of the total CUDA time
(42%), followed by backward propagation for these op-
erations ( 9%). We observe similar pattern for XLM in
Figure 3. However, for XLNET in Figure 4, backward
propagation for matrix multiplication, Einstein summa-
tion, and index select occupy most of the CUDA time

(51%).

We observe that the CUDA total Percentange varies
from first epoch to second epoch. For example, this dif-
ference can be seen in BERT and XLLM, where mm and
matmul occupy a larger percentage of CUDA time in
first epoch ( 24% and 18%) in comparison to the sec-
ond ( 18% and 7%). Conversely, MmBackward seems
to occupy a larger percentage of CUDA time in second
epoch ( 7%)in comparison to first epoch ( 12%). The
values observed in the second epoch remain the same in
subsequent epochs.

We also use PyTorch Autograd profiler’s
record_function () to label blocks of code
performing forward propagation, backward propagation
and parameter updates, in order to capture the CUDA
time in each of these blocks for BERT. From this, we
observe that the total CUDA time occupied by all the
operations in the forward propagation is more than the
backward propagation in the first epoch. However, in
the subsequent epochs, the time spent in the backward
propagation is more than the time spent in the forward
propagation.

XLM Profiling of CUDA Operations
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Figure 3: Profiling XLM

XLNet Profiling of CUDA Operations
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Figure 4: Profiling XLNET

4.3 Caching

In this section, we discuss some results of the caching
phase. Specifically, we study the trade-off of batch size
vs GPU memory usage, time taken to fine-tune with
caching, and the size of cached data in GPU memory.

Table 1 shows the time taken to fine-tune the BERT
model as described in section 2.1 in two settings: the
conventional approach and the caching approach. In the
caching approach, a majority of the fine-tuning time is
spent in computing the cache and storing it in the GPU.
After caching the final layer outputs in the GPU, the time
taken per epoch is less than half a second for the small
dataset and about 10 seconds for the large dataset which
is very small comparable to the time to cache. As a re-
sult, the total time taken to fine-tune with caching is or-
ders of magnitude smaller than the total time taken to
fine-tune without caching without any drop in model ac-
curacy. The benefit comes because of the fact that most
of the time taken in fine-tuning without caching is in the
forward propagation step which involves a lot of matrix
multiplications and hence needs a lot of time and com-
pute resources.

In table 2, we analyze the amount of space occupied by
the cache in GPU while fine-tuning for different tasks.



Dataset Size No Caching Caching
Total Time (s) | Caching Time (s) | Total Time (s)
Small (5 epochs) 155.43 32.63 34.72
Large (2 epochs) 1631.86 871.57 889.55

Table 1: Caching time: small dataset: 3433, large dataset: 89632. Batch size: 12. Caching significantly improves total

time by bypassing the Transformer forward propagation.

. Cache Size
Task Last fe layer dim Small Dataset | Large Dataset
Sentence Classification 768 10.06 MiB 262.59 MiB
Question Answering 384 x 768 3.77 GiB 98.47 GiB*

Table 2: Number of training examples: small dataset: 3433, large dataset: 89632. Batch size: 12. *Doesn’t fit in the

GPUs we experimented.
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Figure 5: Batch size vs GPU Memory

We experimented with different tasks that require dif-
ferent sizes of the last fully connected layer of the pre-
trained model to be cached. The sentence classification
task just needs last-layer hidden state of the first token
(classification token) of the sentence which is of dimen-
sion 768. On the other hand, the question answering task
requires last-layer hidden states for all the words in the
sequence (shape: 384 x 768). As a result, for the sen-
tence classification task, the cached data even using the
large dataset is about a quarter of a Gigabyte. On the
other hand, caching for question answering task for small
dataset takes up about 4 GiB storage and for the large
dataset, the cache doesn’t fit in the GPU.

In figures 5 and 6, we analyze the effect of batch size
in time taken to cache and the GPU memory consumed.
As the size of the batch increases, the time taken to cache
decreases as the model can batch the forward propaga-
tion computations for multiple training examples at once.
On the other hand, as the batch size increases, the total
GPU memory consumed increases linearly as seen in fig-
ure 5. Therefore, there is a clear trade-off between the
time taken to build the cache and the availability of GPU
memory.

Cache time (sec)
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Figure 6: Batch size vs Time to Cache

5 Related Work

Various systems frameworks have been developed to
help with the training and serving of machine learn-
ing models. Bismarck [4] has been proposed as an in-
RDBMS architecture, useful for training smaller models
containing fewer parameters but not applicable for Trans-
former models. The parameter server model [16] works
well for distributed training of bigger machine learning
models where the number of model parameters and the
amount of training data is large, which can be applicable
to the large-structured Transformer models.

Several other systems have been proposed to help ac-
celerate Machine Learning training. Orion [30] uses dis-
tributed shared memory along with a dependence analy-
sis mechanism to determine if parallelism is effective and
schedules distributed computations. Parallax [12] ex-
ploits the sparsity of NLP model parameters to optimize
data parallel training by combining the Parameter Server
[16] and AllReduce architectures to reduce the amount
of data transfer. [32] exploits the advent of specialized
hardware, Remote Direct Memory Access (RDMA), to
reduce the bottleneck of RPCs in ML training. But, none
of the above approaches specifically target the workload



behavior in Transformer models. LARS [34] suggests a
new training approach designed specifically to address
large convolutional neural network training, but it per-
forms poorly for attention models such as Transform-
ers. In LAMB [35], using large mini-batches and lay-
erwise adaptive optimization demonstrates that training
BERT can be done in just 76 minutes. However, these
approaches improving the training time and the problem
of inefficient fine-tuning is still left unaddressed.

Various techniques have been explored to compress
machine learning models to accelerate the fine-tuning
or inference. Quantization is a technique of decreas-
ing the numerical precision of a model’s weights. Post-
training quantization like k-means clustering quantiza-
tion has been explored in [7], though such methods don’t
improve memory requirements or speed. Quantization-
aware training has been explored in [10] which can be
used to increase performance for predictions. Pruning is
another technique that has been explored: by removing
individual connection weights as explored in [5, 8], the
matrices are made sparser, and implementations like Ten-
sorFlow accelerate sparse matrix multiplications. Neu-
ron Pruning, where entire neurons are removed as ex-
plored in [22], makes weight matrices physically smaller
which in turn makes computations with them faster.
Removing entire weight matrices has been explored in
[21] where they remove entire attention heads from big
transformer-based models with minimal accuracy losses.
Knowledge distillation is another technique that has been
explored in [13, 18, 27, 28]. After learning a big model
(teacher), a smaller model (student) is trained to mimic
the teacher’s behaviour (either the output or internal data
representations). However, all the above techniques in-
volve either making changes to the existing model or re-
quire the creation of an additional, simpler model.

Some work has also been done in the context of Trans-
former models. [6] uses a stacking algorithm to trans-
fer knowledge from a shallow model to deep model and
apply stacking to progressively accelerate and achieves
similar performance with faster training. In [36], they
use masking tricks and dynamic programming to speed-
up the decoding phase by 4x, but has comparable train-
ing time in total. However, both these techniques im-
prove the training performance by making changes to the
model architecture.

Freeze Inference [14] is a system that caches interme-
diate layer outputs only for efficient deep learning infer-
ence. As the workload targeted by Freeze Inference is in-
ference, the system cannot make any assumptions about
the new examples it may encounter for inference. As a
result, Freeze Inference uses techniques such as comput-
ing the similarity of the intermediate layer activations of
the new example with the cached data and approximates
the prediction of the model based on the similarity. On

the other hand, the workload targeted by FastTran is fine-
tuning in which the same training data is repeatedly sam-
pled (possibly randomly) in each epoch. FastTran also
targets fine-tuning Transformer models in which most of
the pre-trained model parameters are kept static. Conse-
quently, FastTran can employ simple caching techniques
without having to perform nearest-neighbor computa-
tions on the cached weights, while reducing the fine-
tuning run-time and achieving the same accuracy as the
traditional fine-tuning without caching.

Gandiva [31] is a cluster scheduling framework that
exploits the GPU usage pattern in deep learning jobs
and improves GPU cluster utilization for deep learn-
ing. Themis [19] is another scheduling framework that
addresses the problem of unfair GPU allocation during
deep learning training at the expense of accuracy. Gan-
diva and Themis target performance improvement in a
cluster setup. Instead, the development of FastTran is
solely focused on exploring the trade-off between mem-
ory and performance using caching on a single GPU
server.

6 Future work

In this project, we profiled the GPU usage of few Trans-
former based models. To exploit the behavior of resource
usage, we then explored a simple caching mechanism to
reduce the run-time of fine-tuning the Transformer mod-
els. We experimentally evaluated the proposed mecha-
nism in a system called FastTran and demonstrated the
system’s ability to efficiently fine-tune Transformer mod-
els without any reduction in accuracy.

In this project, we only targeted a setup consisting of
a server with a single GPU. Even though the techniques
proposed in FastTran may apply to a distributed setting
with multiple GPUs, it would be interesting to explore
the new challenges that emerge. So, a future project
could attempt to exploit workload behavior to improve
scheduling decisions in Transformer models for efficient
utilization in a cluster environment.

FastTran only looks at one approach of performing
fine-tuning in which the pre-trained model parameters
are kept static. Another interesting venture would be
to explore improving the performance of end-to-end
fine-tuning approach in which all the pre-trained model
weights are allowed to train. The challenges in this set-
ting that need to be addressed are which layers of the pre-
trained model to cache, and the trade-offs between avail-
able GPU memory, time, and accuracy achieved. Com-
pared to the profiling approach used by FastTran, doing
so in an end-to-end fine-tuning setting might require pro-
filing at an even lower level. For example, opening up
the Transformer model and profiling each of the individ-



ual components such as the encoders, decoders and the
attention modules might give further insights into how
the caching can be performed.
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Figure 7: Transformer NV VP Profiling Results

A.1 Profiling Results

Here, we present the results obtained for Transformer profiling. We profiled a Transformer model for 1 batch of
execution with one layer of encoder and decoder and one attention head. Figure 7 shows a screenshot of the nvvp
program obtained by profiling the Transformer model using nvprof.
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